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Abstract— In this work, we investigate longitudinal sam-
pling and aliasing effects in multi-slice helical CT. We
demonstrate that longitudinal aliasing can be a significant,
complicated, and potentially detrimental effect in multi-slice
helical CT reconstructions. Multi-slice helical CT scans are
generally undersampled longitudinally for all pitches of clin-
ical interest, and the resulting aliasing effects are spatially
variant. As in the single-slice case, aliasing is shown to be
negligible at the isocenter for circularly symmetric objects
due to a fortuitous aliasing cancellation phenomenon. How-
ever, away from the isocenter, aliasing effects can be signif-
icant, spatially variant, and highly pitch-dependent. This
implies that measures more sophisticated than isocenter
slice sensitivity profiles are needed to characterize longitudi-
nal properties of multi-slice helical CT systems adequately.
Such measures are particularly important in assessing the
question of whether there are preferred pitches in helical
CT. Previous analyses have generally focused only on isocen-
ter sampling patterns, and our more global analysis leads to
somewhat different conclusions than have been reached be-
fore, suggesting that pitches 3, 4, 5, and 6 are favorable, and
that half-integer pitches are somewhat suboptimal.

I. INTRODUCTION

With the advent of helical systems and particularly with
the advent of the multi-slice helical systems, computed
tomography (CT) has become a truly volumetric imag-
ing modality. Image acquisition now involves complicated
three-dimensional sampling patterns, and volumetric vi-
sualization and analysis techniques have become essential
tools for viewing and analyzing the huge amount of recon-
structed data produced by each scan.

This move toward volumetric CT imaging brings with it
a need for a more complete understanding of the modal-
ity’s three-dimensional image quality properties. In-plane
sampling and resolution properties have been extensively
studied in the context of step-and-shoot CT, and most of
those properties carry over directly to the helical case. In
the longitudinal direction, however, several novel effects of
the single-slice helical scan have been identified and stud-
ied by Yen et al [1,2]. They showed both analytically and
experimentally that single-slice helical CT scans are gener-
ally undersampled longitudinally by a factor of at least 2,
and that the resulting aliasing effects are highly spatially
variant across the field of view due to the peculiarities of
the longitudinal sampling engendered by the helical scan.
These spatially variant aliasing effects can alter object ap-
pearance and contrast across the field view, can make it
difficult to set display windows properly, and can gener-
ally degrade image quality. Not surprisingly, in single-slice
helical CT, the severity of aliasing effects increases mono-
tonically with the helical pitch.
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In this work, we investigate longitudinal sampling and
aliasing effects in multi-slice helical CT. While the heli-
cal scan is expected to have a similar influence on alias-
ing as in the single-slice case, the longitudinal interlacing
of the multiple detector rows produces very complicated
sampling patterns whose effect on aliasing requires care-
ful study. In particular, we expect the severity of aliasing
effects (and the transmission of principal frequencies) to
vary in complicated, non-monotonic ways as a function of
helical pitch. Indeed, we hope to use this study to shed
further light on the question of whether there are certain
pitches—“preferred pitches”—in multi-slice helical CT that
lead to inherently more favorable sampling patterns than
do others.

This question has been addressed in many ways and of-
ten with a different answer. Hu [3] has argued that pitches
3 and 6 are preferred because the bands of projection-ray
dependent complementary samples (discussed below) are
centered between the direct samples and thus produce av-
erage sampling intervals equivalent to those in single-slice
helical CT operating at pitches 1 and 2, respectively. Wang
and Vannier [4] performed a “sensitivity analysis” of cen-
tral detector channel sampling patterns in multi-slice he-
lical CT and reached a nearly opposite conclusion, argu-
ing that pitch 6 is distinctly suboptimal relative to other
nearby pitches and that a pitch slightly less than 3 is to be
preferred to pitch 3 itself. Both of these sampling analyses
are limited in their scope, however, in that they only truly
apply to the longitudinal sampling for the central detector
channel (v = 0), and thus really only predict performance
at the system isocenter. Given the extreme variation in lon-
gitudinal sampling patterns between central and peripheral
detector channels and the spatially variant nature of alias-
ing effects, we felt it important to develop a more global
analysis accounting for the entirety of the longitudinal sam-
pling that arises at each pitch.

II. METHODS
A. Theoretical analysis of sampling and aliasing

We begin with a theoretical analysis of longitudinal sam-
pling and aliasing effects in reconstructed multi-slice helical
CT volumes. To facilitate comparison with the analysis of
single-slice helical CT sampling and aliasing, we adopt and,
where necessary, extend the notation of Yen et al. [1].

In N-slice helical CT under the multiple parallel fan-
beam approximation, we can regard the measured data as
samples of a 3D fanbeam sinogram pg(7, z), where § is the
projection angle, v is the angle between the projection ray
in question and the central ray of the fanbeam, and z is



the longitudinal position along the object being imaged.
In practice, the imaging is performed with detectors of fi-
nite longitudinal extent; thus the function being sampled is
more appropriately modeled as the convolution of the ideal
sinogram and the detector’s longitudinal response function,
which we denote a(z) (in this work we ignore blurring and
sampling effects in the v coordinate in order to focus on
longitudinal effects). Thus we denote by

ps(7,2) a(z)

the 3D function whose samples we acquire. Often a(z) is
modeled as an ideal rectangular function of width D, where
D is the longitudinal detector collimation at the isocenter.
At each of M projection angles f; = (2wi/M), i =
0,...,M — 1, and at each value of ~, the data acquired
by the mth detector row in an R-revolution scan at helical
pitch P, comprises samples in z that can be written as
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R—

=P, (7,2 Z [ (i+kd31+mp)]
i M

where ds; = PpD. The delta function contains three terms
of interest. The first term, z‘ﬁ‘,}, reflects the overall longi-
tudinal offset of the sequence at each projection angle; this
arises due to the helical nature of the scan. The second
term, kds1, is the actual sampling step, as k is the sum-
mation index and d; is the longitudinal interval between
samples at (8;,7v) and (8; + 2m,7). The third term, mD,
reflects the overall longitudinal offset of the sequence for
the mth detector.

Given these sequences of longitudinal samples at each 3;
and « for each detector row, it is common practice to inter-
polate a complete sinogram p(ﬁ'int) (v, 2) at a fixed value of z
so that reconstruction can proceed by use of conventional
fanbeam reconstruction algorithms. In addition to making
use of the direct samples of Eq. 1 for interpolation, it is gen-
erally advantageous to exploit the redundancy of fanbeam
data acquired over 27 to augment these samples with the

complementary samples sgﬂzw +2,Y(—fy,z) that correspond
(m)(
v

geometrically to the same projection ray as s, ,2), only
shifted longitudinally by (Z322) d,;. The most straightfor-
ward interpolation approach, 180MLI, makes use of linear
interpolation among these direct and complementary sam-
ples, and it can be expressed as
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where *, denotes a 1D convolution in the variable z, and
h((im) (v,2) and h{™ (v, z) are the linear interpolation ker-
nels applied to the direct and complementary samples, re-
spectively, of the mth detector row. In the z variable, these
kernels have the form of an asymmetric triangle function.

The half-widths of these asymmetric triangles can be com-
puted empirically from the sampling patterns that arise
when the direct and complementary samples for all rows
are interlaced appropriately at each +.

Given a stationary fanbeam sinogram pg?t) (v, 2), the
penultimate step of the reconstruction process is to filter it
in the vy direction,

45,(1,2) = [Docos(Mpl (1,2)] %, 900, (3)
where Dg is the fanbeam focal length, and g(v) is the
fanbeam reconstruction filter. Reconstruction of an im-
age f(r,®,z), expressed here in polar coordinates, is then
achieved by use of

M-1 1
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where L(r, ¢, 3;) and 4" are known functions of r, ¢, and
B; defined in [1,5].

Equation 4 can be viewed as an expression for a con-
tinuous 3D volume f(r, ¢, z) reconstructed from the mea-

sured, sampled data s(m)(% z). We are interested in the
effect that the longltudmal sampling during the measure-
ment process has on the longitudinal properties of the re-
constructed volume. Thus we regard f(r, @, z), for fixed
(r,¢) as a continuous 1D function of z, which we denote
fr,$)(2), and will examine the spectrum of the resulting
profiles. In practice, of course, we do not reconstruct vol-
umes that are continuous in the z coordinate, but rather
that comprise a finite set of slices spaced by a reconstruc-
tion interval dso. However, because we are interested in the
effect of the acquisition sampling, we can safely disregard
this resampling step.

Computing the Fourier transform with respect to z of
Eq. 2, as in [1], yields
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and where H{™ (v, f.), H(™ (3, f.), and Py,(y,f.) are
the Fourier transforms with respect to z of h((im) (v, 2) and
R™ (7,2), and pj, (v, 2), respectively.

Equation 5 allows us to draw some conclusions about po-

tential aliasing effects. It can be argued that the helical CT
data is at least approximately bandlimited longitudinally



by the first zero of the rectangular detector response func-
tion, which occurs at f, = 1/D [1]. Satisfying the Nyquist
sampling condition would thus require a sampling interval
ds1 = D/2. From Eq. 5, it can be seen that the fundamen-
tal sampling interval, which determines the spacing of the
spectral replications Péi (’7, I = %) is ds1 = PpD, and
thus the Nyquist condition is not satisfied for reasonable
values of P,. In general, then, we might expect substantial
aliasing effects characteristic of sampling at interval P, D.
However, the phase factors in Eqgs. 5 and 6 can lead to
partial or complete cancellation of aliasing in some circum-
stances.

The first such case arises when the helical pitch Py is an
integer less than or equal to the number of detector rows N.
In this case, the H(™) (v, £.) are all of the form w,, H (7, f.),
where the w,, are normalization weights chosen so that
the w,, for detector rows that follow the same trajectories
sum to 1. Given this, it is possible to show that the only
remaining m dependence in Eq. 6 is contained in a term
of the form:

Pn—1
Z e IPTREL = Ph,
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otherwise

In this case, it is possible to replace all the k in Eq. 5
by Ppk, and thus the effective sampling interval becomes
ds1/Pr, = D. This interval still does not satisfy the Nyquist
condition, but the nature and severity of the aliasing effects
will be substantially altered relative to the general, non-
integer pitch case.

The second situation in which we might expect outright
aliasing cancellation is at the system isocenter when imag-
ing circularly symmetric objects, a phenomenon demon-
strated by Yen et al. for single-slice helical CT. In this
situation, it is possible to manipulate Eq. 5 to isolate a
factor of the form

M—1
Z e—j2m’§ — M,
; 0,
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and thus the effective isocenter sampling interval becomes
ds1 /M, a reduction by the number of projection angles per
revolution!

fork =0,£M,+2M,...
otherwise,

(7)

B. Numerical evaluation of analytic results
B.1 Spatial distribution of aliasing effects

In order to study the spatial distribution of aliasing ef-
fects, we evaluated Eq. 5 for a circularly symmetric, cylin-
drical object with radius R, and with sinusoidal longitudi-
nal variation of frequency fy. That is, we assumed

p(7,2) = py(7) cos(2m fo2),

where

py(7) = { VR —D§ sin®(7),
0,

v < sinfl(Rc/Dg)
v > sin"'(R./Do)

Thus
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This object is similar to the cylindrical, square-wave phan-
tom employed by Yen et al. [1], and it allows us to isolate
and quantify aliasing effects easily. An ideal reconstruc-
tion would have energy only at the frequencies f, = % fo.
However, due to aliasing effects we actually expect energy
at f, = tfo + disl’ for k € Z. For one such frequency
of interest f, we evaluate the factor in square brackets in
Eq. 5 by computing the sum over the appropriate values
of k (in most cases, only one k contributes to each f, of
interest). We evaluate H("™ (v, f.) by computing the asym-
metric triangles h(™ (v, z) on a discrete (v, z) grid, heav-
ily zero-padding in z, and then taking a discrete Fourier
transform to obtain estimates of H(™) (v, f.) on a discrete
(7, f2) grid. The quantity in square brackets can be ex-
pressed as a 2D, complex-valued array having dimensions
of a sinogram, and thus F; {f(, ) (z)} can be computed
on a Cartesian grid simply by applying a fanbeam filtered
backprojection routine to the real and imaginary compo-
nents of this sinogram-like quantity. The magnitude of the
resulting complex-valued image gives the magnitude of the
longitudinal spectrum at frequency f, at each transverse
point in the reconstructed volume.

We evaluated such images for a 4-row system at a num-
ber of pitches, using a cylindrical phantom of radius 230
mm and fundamental frequency fo = 1/3.175 mm~!. We
modeled the detector response as rectangular, with lon-
gitudinal collimation 2.5 mm at the isocenter. We used
128 projection angles and 128 equiangular projection rays,
spaced by 4 mm at the isocenter, and a focal length of 540
mm. Typical results are given in Sec. III-A.

B.2 Contrast to aliased noise as a function of pitch

In addition to examining the spatial distribution of alias-
ing effects, we also sought to quantify the severity of alias-
ing effects as a function of helical pitch, in an effort to
shed some light on the issue of whether there are preferred
pitches in multi-slice helical CT. To do so, we adopted the
point of view of Park et al. [6], in which aliasing is re-
garded as structured, signal-dependent noise that can in-
terfere with the detection of a signal. We then computed a
contrast-to-aliased-noise ratio (CN,R) for reconstructions
of the object discussed in Sec. II-B, using the geometry
discussed there, for pitches ranging from 1.0 to 8.0 in incre-
ments of 0.1. Yen et al. also used a CN, R figure of merit in
their consideration of single-slice helical CT [2]. However,
in that case, the main frequency produces only a single
low-frequency aliased peak of interest, and so they define
CN,R for a single longitudinal profile simply in terms of
the amplitudes of the reconstructed main and aliased spec-
tral peaks. In the multi-slice case, there will, in general,
be numerous aliased peaks at low frequencies. We are also
interested in a more global measure of aliasing content in



an entire reconstructed volume. Thus we define
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where Fp, (z;,y;f;) is the spectral magnitude image for
frequency f, on a Cartesian grid. The i and j sums run over
pixels less of distance less than R, from the image center
and the f, sum runs over aliased frequencies between 0 and
2/D. Note that CN,R is expressed in decibels.

ITI. RESuULTS
A. Spatial variance of aliasing effects

Figure 1 depicts the magnitude |Fp, (z;,y;, f;)| for i =
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Fig. 1. Spatial dependence of longitudinal spectral magnitude for
three frequencies of interest along a line from the isocenter to the
edge of the phantom.

64,...127, 7 = 64, and three values of f,: f. = fo,
fo = fa1 = (—fo + %)a and f, = fa2 = (fO + %) These
are the only three values of f, € [0, %) for which the spec-
tral magnitude is non-negligible. This fact alone confirms
the finding in Sec. II-A that the effective sampling interval
is D and not D Py, for integer pitches less than or equal .
Otherwise, we would have expected to find non-negligible
spectral magnitude at, for instance, f, = (— fo+ 3%) The
figure itself confirms the spatially variant nature of the
aliasing effects, which increase in magnitude from zero at
the isocenter to a maximum near the periphery of the phan-
tom.

B. Contrast to aliased noise as a function of pitch

Figure 2 plots the calculated C'N, R versus helical pitch;
higher values of C N, R are better. As expected, the curve
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Fig. 2. CNgR, in decibels, versus helical pitch for a four-slice scanner
with longitudinal collimation width 2.5 mm at the isocenter imag-
ing an object with sinusoidal longitudinal variation of frequency
fo =1/3.175 mm~1!. Higher values of C N, R are better.

is far from monotonic. Local maxima are evident around
pitches 3, 4, 5, and 6. Some complicated variation is ev-
ident between pitches 1 and 2, with pitch 2 being a clear
minimum in the curve. Other minima occur at half-integer
pitches.

An intuitive explanation of these results can be ob-
tained by considering the longitudinal sampling patterns
that arise at various pitches and at various values of . For
example, at pitch 3, the direct samples of the four detector
rows interlace to form a uniform sampling pattern with in-
terval D. At v = 0, the complementary data reside midway
between these direct samples, and thus provides effective
sampling interval of D /2, which allows relatively narrow
interpolation kernels to be applied. At larger values of 7,
the complementary data approaches but do not, in gen-
eral, cross over the direct samples, and thus do continue to
provide some measure of stable aliasing suppression.

Perhaps the most surprising aspect of Fig. 2 is the peak
at pitch 4, which is generally considered a poor choice be-
cause of its unfavorable isocenter SSP performance. As at
pitch 3, the direct samples of the four detector rows inter-
lace to form a uniform sampling pattern with interval D.
However, now at v = 0, the complementary data are coin-
cident with these direct samples, and relatively broad in-
terpolation kernels must be applied; this explains the poor
isocenter SSP performance. However, for larger values of v,
which contribute most to areas of the reconstructed volume
where aliasing is likely to be problematic, the complemen-
tary data reside nearly midway between the direct samples
and thus provide a measure of aliasing suppression where
it is needed most.



IV. DISCUSSION AND CONCLUSIONS

We have demonstrated that longitudinal aliasing can be
a significant, complicated, and potentially detrimental ef-
fect in multi-slice helical CT reconstructions. Multi-slice
helical CT scans are generally undersampled for all pitches
of clinical interest, and the resulting aliasing effects are
spatially variant.

As in the single-slice case, aliasing is negligible at the
isocenter for circularly symmetric objects due to a fortu-
itous aliasing cancellation phenomenon. The effective over-
sampling at the isocenter of such objects explains why it is
even possible to obtain reasonable looking slice sensitivity
profiles (SSP) and longitudinal modulation transfer func-
tions of an ostensibly undersampled system: these mea-
surements are always performed at the isocenter by use of a
circularly symmetric phantom. However, this phenomenon
in no way licenses the use of these measures to characterize
longitudinal resolution properties of multi-slice helical CT
systems. Away from the isocenter, aliasing effects can be
significant, spatially variant, and highly pitch dependent.
More sophisticated measures of longitudinal properties are
needed to characterize multi-slice helical CT systems ade-
quately.

Such measures are particularly important in assessing
the question of whether there are preferred pitches in he-
lical CT. Previous analyses have generally focused only
on isocenter sampling patterns, and thus predict isocenter
SSP performance, but neglect aliasing effects away from
the isocenter. Our more global analysis suggests that the
much maligned pitch 4, despite its poor isocenter SSP per-
formance, actually yields a very favorable global CN,R
because of favorably uniform longitudinal sampling for its
outer detector channels. The analysis did confirm the ad-
vantages of pitches 3 and 6, and also suggested that pitch
5 would be favorable. Half-integer pitches appeared to be
poor performers by this measure.

The analysis performed above implicitly blends sampling
and interpolation effects. In this work, we examined the
use of straightforward linear interpolation. In practice,
straightforward linear interpolation is rarely used because
frequent “changeovers” in the pairs of detector rows con-
tributing to a given slice tend to produce artifacts in recon-
structed images. In general, either attention is restricted
to pitches where linear or quasi-linear approaches can be
applied safely [3] or broader, adaptive z-filtering interpola-
tion approaches are employed [7,8]. We do not expect that
the use of a different interpolation approach would funda-
mentally alter the conclusions of this study. The presence
of longitudinal aliasing effects and their spatial distribu-
tion are effectively inherent properties of the helical scan
geometry. Altering the interpolation approach might alter
the transmission of principal, unaliased frequencies some-
what, but would not be expected to affect aliasing effects
profoundly. Nonetheless, we do intend to extend our anal-
ysis to these alternative approaches, as their longitudinal
properties have only been characterized through use of SSP
measurements, whose limitations should be evident from
the preceding discussions.

One effect that was not considered in great detail in this
summary is the small cone angle that arises in multi-slice
helical CT. This cone angle has generally been ignored in
deriving reconstruction algorithms and sampling analyses
by making the multiple parallel fanbeam assumption made
here, i.e. by assuming that the multi-row data comprises
multiple, parallel transverse projections of the object, not
multiple, differently oblique ones. This approximation is
regarded as reasonably sound for systems of 4 or fewer
rows, although we have shown elsewhere that the small
cone beam angle does influence longitudinal sampling and
aliasing properties by introducing inconsistencies among
the data measured by the different detector rows [9]. We
felt justified in ignoring the effect in the present summary
because we felt that we could contribute a novel, thorough
analysis of sampling in multi-slice helical CT under the ap-
proximation that has been the foundation of all previous
analyses. The development of a more complete analysis
that does account for the cone angle effect is the subject of
ongoing work.
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